ontolearn.learners.celoe ======================== .. py:module:: ontolearn.learners.celoe Classes ------- .. autoapisummary:: ontolearn.learners.celoe.CELOE Module Contents --------------- .. py:class:: CELOE(knowledge_base: ontolearn.abstracts.AbstractKnowledgeBase = None, reasoner: Optional[owlapy.abstracts.AbstractOWLReasoner] = None, refinement_operator: Optional[ontolearn.abstracts.BaseRefinement[ontolearn.search.OENode]] = None, quality_func: Optional[ontolearn.abstracts.AbstractScorer] = None, heuristic_func: Optional[ontolearn.abstracts.AbstractHeuristic] = None, terminate_on_goal: Optional[bool] = None, iter_bound: Optional[int] = None, max_num_of_concepts_tested: Optional[int] = None, max_runtime: Optional[int] = None, max_results: int = 10, best_only: bool = False, calculate_min_max: bool = True) Bases: :py:obj:`ontolearn.base_concept_learner.RefinementBasedConceptLearner` Class Expression Learning for Ontology Engineering. .. attribute:: best_descriptions Best hypotheses ordered. :type: EvaluatedDescriptionSet[OENode, QualityOrderedNode] .. attribute:: best_only If False pick only nodes with quality < 1.0, else pick without quality restrictions. :type: bool .. attribute:: calculate_min_max Calculate minimum and maximum horizontal expansion? Statistical purpose only. :type: bool .. attribute:: heuristic_func Function to guide the search heuristic. :type: AbstractHeuristic .. attribute:: heuristic_queue A sorted set that compares the nodes based on Heuristic. :type: SortedSet[OENode] .. attribute:: iter_bound Limit to stop the algorithm after n refinement steps are done. :type: int .. attribute:: kb The knowledge base that the concept learner is using. :type: AbstractKnowledgeBase .. attribute:: max_child_length Limit the length of concepts generated by the refinement operator. :type: int .. attribute:: max_he Maximal value of horizontal expansion. :type: int .. attribute:: max_num_of_concepts_tested :type: int .. attribute:: max_runtime Limit to stop the algorithm after n seconds. :type: int .. attribute:: min_he Minimal value of horizontal expansion. :type: int .. attribute:: name Name of the model = 'celoe_python'. :type: str .. attribute:: _number_of_tested_concepts Yes, you got it. This stores the number of tested concepts. :type: int .. attribute:: operator Operator used to generate refinements. :type: BaseRefinement .. attribute:: quality_func :type: AbstractScorer .. attribute:: reasoner The reasoner that this model is using. :type: AbstractOWLReasoner .. attribute:: search_tree Dict to store the TreeNode for a class expression. :type: Dict[OWLClassExpression, TreeNode[OENode]] .. attribute:: start_class The starting class expression for the refinement operation. :type: OWLClassExpression .. attribute:: start_time The time when :meth:`fit` starts the execution. Used to calculate the total time :meth:`fit` takes to execute. :type: float .. attribute:: terminate_on_goal Whether to stop the algorithm if a perfect solution is found. :type: bool .. py:attribute:: __slots__ :value: ('best_descriptions', 'max_he', 'min_he', 'best_only', 'calculate_min_max', 'heuristic_queue',... .. py:attribute:: name :value: 'celoe_python' .. py:attribute:: search_tree :type: Dict[owlapy.class_expression.OWLClassExpression, ontolearn.search.TreeNode[ontolearn.search.OENode]] .. py:attribute:: heuristic_queue .. py:attribute:: best_descriptions .. py:attribute:: best_only :value: False .. py:attribute:: calculate_min_max :value: True .. py:attribute:: max_he :value: 0 .. py:attribute:: min_he :value: 1 .. py:method:: next_node_to_expand(step: int) -> ontolearn.search.OENode Return from the search tree the most promising search tree node to use for the next refinement step. :returns: Next search tree node to refine. :rtype: _N .. py:method:: best_hypotheses(n: int = 1, return_node: bool = False) -> Union[owlapy.class_expression.OWLClassExpression | Iterable[owlapy.class_expression.OWLClassExpression], ontolearn.search.OENode | Iterable[ontolearn.search.OENode]] Get the current best found hypotheses according to the quality. :param n: Maximum number of results. :returns: Iterable with hypotheses in form of search tree nodes. .. py:method:: make_node(c: owlapy.class_expression.OWLClassExpression, parent_node: Optional[ontolearn.search.OENode] = None, is_root: bool = False) -> ontolearn.search.OENode .. py:method:: updating_node(node: ontolearn.search.OENode) Removes the node from the heuristic sorted set and inserts it again. :param Node to update.: :Yields: The node itself. .. py:method:: downward_refinement(node: ontolearn.search.OENode) -> Iterable[ontolearn.search.OENode] Execute one refinement step of a refinement based learning algorithm. :param node: the search tree node on which to refine. :type node: _N :returns: Refinement results as new search tree nodes (they still need to be added to the tree). :rtype: Iterable[_N] .. py:method:: fit(*args, **kwargs) Find hypotheses that explain pos and neg. .. py:method:: encoded_learning_problem() -> Optional[ontolearn.abstracts.EncodedPosNegLPStandardKind] Fetch the most recently used learning problem from the fit method. .. py:method:: tree_node(node: ontolearn.search.OENode) -> ontolearn.search.TreeNode[ontolearn.search.OENode] Get the TreeNode of the given node. :param node: The node. :returns: TreeNode of the given node. .. py:method:: show_search_tree(heading_step: str, top_n: int = 10) -> None Show search tree. .. py:method:: update_min_max_horiz_exp(node: ontolearn.search.OENode) .. py:method:: clean() Clear all states of the concept learner.