ontolearn.learners.sparql_query_learner ======================================= .. py:module:: ontolearn.learners.sparql_query_learner Classes ------- .. autoapisummary:: ontolearn.learners.sparql_query_learner.SPARQLQueryLearner Module Contents --------------- .. py:class:: SPARQLQueryLearner(learning_problem: ontolearn.learning_problem.PosNegLPStandard, endpoint_url: str, max_number_of_filters: int = 3, use_complex_filters: bool = True) Learning SPARQL queries: Given a description logic concept (potentially generated by a concept learner), try to improve the fittness (e.g., F1) of the corresponding SPARQL query. Attributes: name (str): Name of the model = 'SPARQL Query Learner' endpoint_url (string): The URL of the SPARQL endpoint to use max_number_of_filters (int): Limit the number of filters combined during the improvement process learning_problem (PosNegLPStandard): the learning problem (sets of positive and negative examples) uses_complex_filters (bool): Denotes whether the learner uses complex filters (i.e., makes use of the values of data properties) to improve the quality _root_var (str): The root variable to be used in the OWL2SPARQL conversion _possible_filters (List[str]): A list of possible FILTERs to use to improve the quality .. py:attribute:: __slots__ :value: ('endpoint_url', 'max_number_of_filters', 'uses_complex_filters', 'learning_problem',... .. py:attribute:: name :value: 'SPARQL Query Learner' .. py:attribute:: endpoint_url :type: str .. py:attribute:: max_number_of_filters :type: int .. py:attribute:: learning_problem :type: ontolearn.learning_problem.PosNegLPStandard .. py:attribute:: uses_complex_filters :type: bool .. py:method:: learn_sparql_query(ce: owlapy.class_expression.OWLClassExpression)