Examples
In this guide we will show some non-trival examples of typical use-cases of Ontolearn which you can also find in the examples folder.
Ex. 1: Learning Over a Local Ontology
The first example is about using EvoLearner to learn class expressions about the following target concepts: “Aunt”, “Brother”, “Cousin”, “Granddaughter”, “Uncle” and “Grandgrandfather”.
import json
from ontolearn.knowledge_base import KnowledgeBase
from ontolearn.concept_learner import EvoLearner
from ontolearn.learning_problem import PosNegLPStandard
from owlapy.owl_individual import OWLNamedIndividual, IRI
from owlapy.class_expression import OWLClass
from ontolearn.utils import setup_logging
setup_logging()
# Access the learning problem and the ontology file path
with open('synthetic_problems.json') as json_file:
settings = json.load(json_file)
# Define the Knowledge Base from a local ontology file
kb = KnowledgeBase(path=settings['data_path'])
# For each target concept
for str_target_concept, examples in settings['problems'].items():
p = set(examples['positive_examples'])
n = set(examples['negative_examples'])
print('Target concept: ', str_target_concept)
# Lets inject more background info where we ignore some trivial concepts
if str_target_concept in ['Granddaughter', 'Aunt', 'Sister', 'Brother']:
NS = 'http://www.benchmark.org/family#'
concepts_to_ignore = {
OWLClass(IRI(NS, 'Brother')),
OWLClass(IRI(NS, 'Sister')),
OWLClass(IRI(NS, 'Daughter')),
OWLClass(IRI(NS, 'Mother')),
OWLClass(IRI(NS, 'Grandmother')),
OWLClass(IRI(NS, 'Father')),
OWLClass(IRI(NS, 'Grandparent')),
OWLClass(IRI(NS, 'PersonWithASibling')),
OWLClass(IRI(NS, 'Granddaughter')),
OWLClass(IRI(NS, 'Son')),
OWLClass(IRI(NS, 'Child')),
OWLClass(IRI(NS, 'Grandson')),
OWLClass(IRI(NS, 'Grandfather')),
OWLClass(IRI(NS, 'Grandchild')),
OWLClass(IRI(NS, 'Parent')),
}
target_kb = kb.ignore_and_copy(ignored_classes=concepts_to_ignore)
else:
target_kb = kb
# Define learning problem
typed_pos = set(map(OWLNamedIndividual, map(IRI.create, p)))
typed_neg = set(map(OWLNamedIndividual, map(IRI.create, n)))
lp = PosNegLPStandard(pos=typed_pos, neg=typed_neg)
# Define learning model
model = EvoLearner(knowledge_base=target_kb, max_runtime=600)
# Fit the learning problem to the model
model.fit(lp, verbose=False)
# Save top n hypotheses
model.save_best_hypothesis(n=3, path='Predictions_{0}'.format(str_target_concept))
# Get top n hypotheses
hypotheses = list(model.best_hypotheses(n=3))
# Use hypotheses as binary function to label individuals.
predictions = model.predict(individuals=list(typed_pos | typed_neg),
hypotheses=hypotheses)
# Print hypothesis
[print(_) for _ in hypotheses]
In synthetic_problems.json
we store the learning problem individuals as string
of IRIs, as well as the path to the ontology.
You can check that file here.
Instead of EvoLearner, you can use the other models. More details about this example are given in the Concept Learning guide.
Ex. 2: Learning Over a Triplestore Ontology
In our next example we will see how to use another model, specifically the Tree-based Description Logic Concept Learner or TDL for short in a dataset which is hosted on a triplestore.
from owlapy.owl_individual import OWLNamedIndividual, IRI
from ontolearn.learners import TDL
from ontolearn.learning_problem import PosNegLPStandard
from ontolearn.triple_store import TripleStore
from ontolearn.utils.static_funcs import save_owl_class_expressions
from owlapy.render import DLSyntaxObjectRenderer
# (1) Initialize Triplestore
kb = TripleStore(url="http://dice-dbpedia.cs.upb.de:9080/sparql")
# (2) Initialize a DL renderer.
render = DLSyntaxObjectRenderer()
# (3) Initialize a learner.
model = TDL(knowledge_base=kb)
# (4) Define a description logic concept learning problem.
lp = PosNegLPStandard(pos={OWLNamedIndividual(IRI.create("http://dbpedia.org/resource/Angela_Merkel"))},
neg={OWLNamedIndividual(IRI.create("http://dbpedia.org/resource/Barack_Obama"))})
# (5) Learn description logic concepts best fitting (4).
h = model.fit(learning_problem=lp).best_hypotheses()
str_concept = render.render(h)
print("Concept:", str_concept) # e.g. ∃ predecessor.WikicatPeopleFromBerlin
# (6) Save ∃ predecessor.WikicatPeopleFromBerlin into disk
save_owl_class_expressions(expressions=h, path="owl_prediction")
Here we have used the triplestore endpoint as you see in step (1) which is available only on a private network. However, you can host your own triplestore server following this guide and run TDL using you own local endpoint.
Ex. 3: CMD Friendly Execution
Now let’s see how you can create a script which you can execute via cmd and pass arguments dynamically. For this example we will use the learning model: Drill.
import json
from argparse import ArgumentParser
import numpy as np
from sklearn.model_selection import StratifiedKFold
from ontolearn.utils.static_funcs import compute_f1_score
from ontolearn.knowledge_base import KnowledgeBase
from ontolearn.learning_problem import PosNegLPStandard
from ontolearn.refinement_operators import LengthBasedRefinement
from ontolearn.learners import Drill
from ontolearn.metrics import F1
from ontolearn.heuristics import CeloeBasedReward
from owlapy.owl_individual import OWLNamedIndividual, IRI
from owlapy.render import DLSyntaxObjectRenderer
def start(args):
# Define knowledge base
kb = KnowledgeBase(path=args.path_knowledge_base)
# Define Learning model: Drill
drill = Drill(knowledge_base=kb,
path_embeddings=args.path_embeddings,
refinement_operator=LengthBasedRefinement(knowledge_base=kb),
quality_func=F1(),
reward_func=CeloeBasedReward(),
epsilon_decay=args.epsilon_decay,
learning_rate=args.learning_rate,
num_of_sequential_actions=args.num_of_sequential_actions,
num_episode=args.num_episode,
iter_bound=args.iter_bound,
max_runtime=args.max_runtime)
if args.path_pretrained_dir:
# load pretrained data
drill.load(directory=args.path_pretrained_dir)
else:
# train the model (Drill needs training)
drill.train(num_of_target_concepts=args.num_of_target_concepts,
num_learning_problems=args.num_of_training_learning_problems)
drill.save(directory="pretrained_drill")
# Define the larning problem and split them into "train" and "test"
with open(args.path_learning_problem) as json_file:
examples = json.load(json_file)
p = examples['positive_examples']
n = examples['negative_examples']
kf = StratifiedKFold(n_splits=args.folds, shuffle=True, random_state=args.random_seed)
X = np.array(p + n)
Y = np.array([1.0 for _ in p] + [0.0 for _ in n])
dl_render = DLSyntaxObjectRenderer()
for (ith, (train_index, test_index)) in enumerate(kf.split(X, Y)):
train_pos = {pos_individual for pos_individual in X[train_index][Y[train_index] == 1]}
train_neg = {neg_individual for neg_individual in X[train_index][Y[train_index] == 0]}
test_pos = {pos_individual for pos_individual in X[test_index][Y[test_index] == 1]}
test_neg = {neg_individual for neg_individual in X[test_index][Y[test_index] == 0]}
train_lp = PosNegLPStandard(pos=set(map(OWLNamedIndividual, map(IRI.create, train_pos))),
neg=set(map(OWLNamedIndividual, map(IRI.create, train_neg))))
test_lp = PosNegLPStandard(pos=set(map(OWLNamedIndividual, map(IRI.create, test_pos))),
neg=set(map(OWLNamedIndividual, map(IRI.create, test_neg))))
pred_drill = drill.fit(train_lp).best_hypotheses()
# Quality on train data
train_f1_drill = compute_f1_score(individuals=frozenset({i for i in kb.individuals(pred_drill)}),
pos=train_lp.pos,
neg=train_lp.neg)
# Quality on test data
test_f1_drill = compute_f1_score(individuals=frozenset({i for i in kb.individuals(pred_drill)}),
pos=test_lp.pos,
neg=test_lp.neg)
# Print predictions
print(
f"Prediction: {dl_render.render(pred_drill)} | Train Quality: {train_f1_drill:.3f} | Test Quality: {test_f1_drill:.3f} \n")
# Define the cmd arguments
if __name__ == '__main__':
parser = ArgumentParser()
# General
parser.add_argument("--path_knowledge_base", type=str,
default='../KGs/Family/family-benchmark_rich_background.owl')
parser.add_argument("--path_embeddings", type=str,
default='../embeddings/Keci_entity_embeddings.csv')
parser.add_argument("--num_of_target_concepts",
type=int,
default=1)
parser.add_argument("--num_of_training_learning_problems",
type=int,
default=1)
parser.add_argument("--path_pretrained_dir", type=str, default=None)
parser.add_argument("--path_learning_problem", type=str, default='uncle_lp2.json',
help="Path to a .json file that contains 2 properties 'positive_examples' and "
"'negative_examples'. Each of this properties should contain the IRIs of the respective"
"instances. e.g. 'some/path/lp.json'")
parser.add_argument("--max_runtime", type=int, default=10, help="Max runtime")
parser.add_argument("--folds", type=int, default=10, help="Number of folds of cross validation.")
parser.add_argument("--random_seed", type=int, default=1)
parser.add_argument("--iter_bound", type=int, default=10_000, help='iter_bound during testing.')
# DQL related
parser.add_argument("--num_episode", type=int, default=1, help='Number of trajectories created for a given lp.')
parser.add_argument("--epsilon_decay", type=float, default=.01, help='Epsilon greedy trade off per epoch')
parser.add_argument("--max_len_replay_memory", type=int, default=1024,
help='Maximum size of the experience replay')
parser.add_argument("--num_epochs_per_replay", type=int, default=2,
help='Number of epochs on experience replay memory')
parser.add_argument('--num_of_sequential_actions', type=int, default=1, help='Length of the trajectory.')
# NN related
parser.add_argument("--learning_rate", type=int, default=.01)
start(parser.parse_args())
In the next guide we will explore the KnowledgeBase class that is needed to run a concept learner.