Source code for ontolearn.clip_architectures

import torch, torch.nn as nn
import random
from typing import List
from ontolearn.nces_modules import *    

[docs] class LengthLearner_LSTM(nn.Module): """LSTM architecture""" def __init__(self, input_size, output_size, proj_dim=256, rnn_n_layers=2, drop_prob=0.2): super().__init__() self.name = 'LSTM' self.loss = nn.CrossEntropyLoss() self.lstm = nn.LSTM(input_size, proj_dim, rnn_n_layers, dropout=drop_prob, batch_first=True) self.dropout = nn.Dropout(drop_prob) self.fc1 = nn.Linear(2*proj_dim, proj_dim) self.fc2 = nn.Linear(proj_dim, proj_dim) self.fc3 = nn.Linear(proj_dim, output_size)
[docs] def forward(self, x1, x2): ''' Forward pass through the network.''' x1, _ = self.lstm(x1) x1 = x1.sum(1).contiguous().view(x1.shape[0], -1) x2, _ = self.lstm(x2) x2 = x2.sum(1).contiguous().view(x2.shape[0], -1) x = torch.cat([x1, x2], dim=-1) x = self.fc1(x) x = torch.selu(x) x = self.dropout(x) x = self.fc2(x) x = x + torch.tanh(x) x = self.fc3(x) return x
[docs] class LengthLearner_GRU(nn.Module): """GRU architecture""" def __init__(self, input_size, output_size, proj_dim=256, rnn_n_layers=2, drop_prob=0.2): super().__init__() self.name = 'GRU' self.loss = nn.CrossEntropyLoss() self.gru = nn.GRU(input_size, proj_dim, rnn_n_layers, dropout=drop_prob, batch_first=True) self.dropout = nn.Dropout(drop_prob) self.fc1 = nn.Linear(2*proj_dim, proj_dim) self.fc2 = nn.Linear(proj_dim, proj_dim) self.fc3 = nn.Linear(proj_dim, output_size)
[docs] def forward(self, x1, x2): ''' Forward pass through the network.''' x1, _ = self.gru(x1) x1 = x1.sum(1).contiguous().view(x1.shape[0], -1) x2, _ = self.gru(x2) x2 = x2.sum(1).contiguous().view(x2.shape[0], -1) x = torch.cat([x1, x2], dim=-1) x = self.fc1(x) x = torch.selu(x) x = self.dropout(x) x = self.fc2(x) x = x + torch.tanh(x) x = self.fc3(x) return x
[docs] class LengthLearner_CNN(nn.Module): """CNN architecture""" def __init__(self, input_size, output_size, num_examples, proj_dim=256, kernel_size: list=[[5,7], [5,7]], stride: list=[[3,3], [3,3]], drop_prob=0.2): super().__init__() assert isinstance(kernel_size, list) and isinstance(kernel_size[0], list), "kernel size and stride must be lists of lists, e.g., [[5,7], [5,7]]" self.name = 'CNN' self.loss = nn.CrossEntropyLoss() self.conv1 = nn.Conv2d(in_channels=1, out_channels=4, kernel_size=(kernel_size[0][0], kernel_size[0][1]), stride=(stride[0][0], stride[0][1]), padding=(0,0)) self.conv2 = nn.Conv2d(in_channels=4, out_channels=8, kernel_size=(kernel_size[1][0], kernel_size[1][1]), stride=(stride[1][0], stride[1][1]), padding=(0,0)) self.dropout1d = nn.Dropout(drop_prob) self.dropout2d = nn.Dropout2d(drop_prob) conv_out_dim = 3536 self.fc1 = nn.Linear(conv_out_dim, proj_dim) self.fc2 = nn.Linear(proj_dim, proj_dim) self.fc3 = nn.Linear(proj_dim, output_size)
[docs] def forward(self, x1, x2): ''' Forward pass through the network.''' x1 = x1.unsqueeze(1) x2 = x2.unsqueeze(1) x = torch.cat([x1, x2], dim=-2) x = self.conv1(x) x = torch.selu(x) x = self.dropout2d(x) x = self.conv2(x) x = x.view(x.shape[0], -1) x = self.fc1(x) x = torch.selu(x) x = self.dropout1d(x) x = self.fc2(x) x = x + torch.tanh(x) x = self.fc3(x) return x
[docs] class LengthLearner_SetTransformer(nn.Module): """SetTransformer architecture.""" def __init__(self, input_size, output_size, proj_dim=256, num_heads=4, num_seeds=1, num_inds=32): super().__init__() self.name = 'SetTransformer' self.loss = nn.CrossEntropyLoss() self.enc = nn.Sequential( ISAB(input_size, proj_dim, num_heads, num_inds), ISAB(proj_dim, proj_dim, num_heads, num_inds)) self.dec = nn.Sequential( PMA(proj_dim, num_heads, num_seeds), nn.Linear(proj_dim, output_size))
[docs] def forward(self, x1, x2): ''' Forward pass through the network.''' x1 = self.enc(x1) x2 = self.enc(x2) x = torch.cat([x1, x2], dim=-2) x = self.dec(x).squeeze() return x