# -----------------------------------------------------------------------------
# MIT License
#
# Copyright (c) 2024 Ontolearn Team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# -----------------------------------------------------------------------------
"""NCES trainer."""
import numpy as np
import copy
import torch
from tqdm import trange
from collections import defaultdict
import os
import json
from ontolearn.data_struct import NCESBaseDataLoader
from torch.optim.lr_scheduler import ExponentialLR
from torch.nn import functional as F
from torch.nn.utils import clip_grad_value_
from torch.nn.utils.rnn import pad_sequence
import time
[docs]
def before_pad(arg):
arg_temp = []
for atm in arg:
if atm == 'PAD':
break
arg_temp.append(atm)
if len(set(arg_temp)) == 3 and ('⊓' in arg_temp or '⊔' in arg_temp):
return arg_temp[0]
return arg_temp
[docs]
class NCESTrainer:
"""NCES trainer."""
def __init__(self, nces, epochs=300, learning_rate=1e-4, decay_rate=0, clip_value=5.0, num_workers=8,
storage_path="./"):
self.nces = nces
self.epochs = epochs
self.learning_rate = learning_rate
self.decay_rate = decay_rate
self.clip_value = clip_value
self.num_workers = num_workers
self.storage_path = storage_path
[docs]
@staticmethod
def compute_accuracy(prediction, target):
def soft(arg1, arg2):
arg1_ = arg1
arg2_ = arg2
if isinstance(arg1_, str):
arg1_ = set(before_pad(NCESBaseDataLoader.decompose(arg1_)))
else:
arg1_ = set(before_pad(arg1_))
if isinstance(arg2_, str):
arg2_ = set(before_pad(NCESBaseDataLoader.decompose(arg2_)))
else:
arg2_ = set(before_pad(arg2_))
return 100*float(len(arg1_.intersection(arg2_)))/len(arg1_.union(arg2_))
def hard(arg1, arg2):
arg1_ = arg1
arg2_ = arg2
if isinstance(arg1_, str):
arg1_ = before_pad(NCESBaseDataLoader.decompose(arg1_))
else:
arg1_ = before_pad(arg1_)
if isinstance(arg2_, str):
arg2_ = before_pad(NCESBaseDataLoader.decompose(arg2_))
else:
arg2_ = before_pad(arg2_)
return 100*float(sum(map(lambda x, y: x == y, arg1_, arg2_)))/max(len(arg1_), len(arg2_))
soft_acc = sum(map(soft, prediction, target))/len(target)
hard_acc = sum(map(hard, prediction, target))/len(target)
return soft_acc, hard_acc
[docs]
def get_optimizer(self, synthesizer, optimizer='Adam'): # pragma: no cover
if optimizer == 'Adam':
return torch.optim.Adam(synthesizer.parameters(), lr=self.learning_rate)
elif optimizer == 'SGD':
return torch.optim.SGD(synthesizer.parameters(), lr=self.learning_rate)
elif optimizer == 'RMSprop':
return torch.optim.RMSprop(synthesizer.parameters(), lr=self.learning_rate)
else:
raise ValueError
print('Unsupported optimizer')
[docs]
@staticmethod
def show_num_learnable_params(model):
print("*"*20+"Trainable model size"+"*"*20)
size = sum([p.numel() for p in model.parameters()])
size_ = 0
print("Synthesizer: ", size)
print("*"*20+"Trainable model size"+"*"*20)
print()
return size
[docs]
def collate_batch(self, batch): # pragma: no cover
pos_emb_list = []
neg_emb_list = []
target_labels = []
for pos_emb, neg_emb, label in batch:
if pos_emb.ndim != 2:
pos_emb = pos_emb.reshape(1, -1)
if neg_emb.ndim != 2:
neg_emb = neg_emb.reshape(1, -1)
pos_emb_list.append(pos_emb)
neg_emb_list.append(neg_emb)
target_labels.append(label)
pos_emb_list[0] = F.pad(pos_emb_list[0], (0, 0, 0, self.nces.num_examples - pos_emb_list[0].shape[0]),
"constant", 0)
pos_emb_list = pad_sequence(pos_emb_list, batch_first=True, padding_value=0)
neg_emb_list[0] = F.pad(neg_emb_list[0], (0, 0, 0, self.nces.num_examples - neg_emb_list[0].shape[0]),
"constant", 0)
neg_emb_list = pad_sequence(neg_emb_list, batch_first=True, padding_value=0)
target_labels = pad_sequence(target_labels, batch_first=True, padding_value=-100)
return pos_emb_list, neg_emb_list, target_labels
[docs]
def map_to_token(self, idx_array):
return self.nces.model[0].inv_vocab[idx_array]
[docs]
def train(self, train_dataloader, save_model=True, optimizer='Adam', record_runtime=True):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for model in self.nces.model:
model_size = self.show_num_learnable_params(model)
if device.type == "cpu":
print("Training on CPU, it may take long...")
else:
print("GPU available !")
print()
print("#"*50)
print()
print("{} starts training... \n".format(model.name))
print("#"*50, "\n")
synthesizer = copy.deepcopy(model).train()
desc = synthesizer.name
if device.type == "cuda":
synthesizer.cuda()
opt = self.get_optimizer(synthesizer=synthesizer, optimizer=optimizer)
if self.decay_rate:
self.scheduler = ExponentialLR(opt, self.decay_rate)
Train_loss = []
Train_acc = defaultdict(list)
best_score = 0.
if record_runtime:
t0 = time.time()
s_acc, h_acc = 0, 0
Epochs = trange(self.epochs, desc=f'Loss: {np.nan}, Soft Acc: {s_acc}, Hard Acc: {h_acc}', leave=True)
for e in Epochs:
soft_acc, hard_acc = [], []
train_losses = []
for x1, x2, labels in train_dataloader:
target_sequence = self.map_to_token(labels)
if device.type == "cuda":
x1, x2, labels = x1.cuda(), x2.cuda(), labels.cuda()
pred_sequence, scores = synthesizer(x1, x2)
loss = synthesizer.loss(scores, labels)
s_acc, h_acc = self.compute_accuracy(pred_sequence, target_sequence)
soft_acc.append(s_acc)
hard_acc.append(h_acc)
train_losses.append(loss.item())
opt.zero_grad()
loss.backward()
clip_grad_value_(synthesizer.parameters(), clip_value=self.clip_value)
opt.step()
if self.decay_rate:
self.scheduler.step()
train_soft_acc, train_hard_acc = np.mean(soft_acc), np.mean(hard_acc)
Train_loss.append(np.mean(train_losses))
Train_acc['soft'].append(train_soft_acc)
Train_acc['hard'].append(train_hard_acc)
Epochs.set_description('Loss: {:.4f}, Soft Acc: {:.2f}%, Hard Acc: {:.2f}%'.format(Train_loss[-1],
train_soft_acc,
train_hard_acc))
Epochs.refresh()
weights = copy.deepcopy(synthesizer.state_dict())
if Train_acc['hard'] and Train_acc['hard'][-1] > best_score:
best_score = Train_acc['hard'][-1]
best_weights = weights
synthesizer.load_state_dict(best_weights)
if record_runtime: # pragma: no cover
duration = time.time()-t0
runtime_info = {"Architecture": synthesizer.name,
"Number of Epochs": self.epochs, "Runtime (s)": duration}
if not os.path.exists(self.storage_path+"/runtime/"):
os.mkdir(self.storage_path+"/runtime/")
with open(self.storage_path+"/runtime/runtime"+"_"+desc+".json", "w") as file:
json.dump(runtime_info, file, indent=3)
results_dict = dict()
print("Top performance: loss: {:.4f}, soft accuracy: {:.2f}% ... "
"hard accuracy: {:.2f}%".format(min(Train_loss), max(Train_acc['soft']), max(Train_acc['hard'])))
print()
results_dict.update({"Train Max Soft Acc": max(Train_acc['soft']), "Train Max Hard Acc": max(Train_acc['hard']),
"Train Min Loss": min(Train_loss)})
if save_model: # pragma: no cover
if not os.path.exists(self.storage_path+"/results/"):
os.mkdir(self.storage_path+"/results/")
with open(self.storage_path+"/results/"+"results"+"_"+desc+".json", "w") as file:
json.dump(results_dict, file, indent=3)
if not os.path.exists(self.storage_path+"/trained_models/"):
os.mkdir(self.storage_path+"/trained_models/")
torch.save(synthesizer.state_dict(), self.storage_path+"/trained_models/"+"trained_"+desc+".pt")
print("{} saved".format(synthesizer.name))
if not os.path.exists(self.storage_path+"/metrics/"):
os.mkdir(self.storage_path+"/metrics/")
with open(self.storage_path+"/metrics/"+"metrics_"+desc+".json", "w") as plot_file:
json.dump({"soft acc": Train_acc['soft'], "hard acc": Train_acc['hard'], "loss": Train_loss}, plot_file,
indent=3)