Source code for ontolearn.nces_trainer

# -----------------------------------------------------------------------------
# MIT License
#
# Copyright (c) 2024 Ontolearn Team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# -----------------------------------------------------------------------------

"""NCES trainer."""
import numpy as np
import copy
import torch
from tqdm import trange
from collections import defaultdict
import os
import json
from ontolearn.data_struct import NCESBaseDataLoader
from torch.optim.lr_scheduler import ExponentialLR
from torch.nn import functional as F
from torch.nn.utils import clip_grad_value_
from torch.nn.utils.rnn import pad_sequence
import time


[docs] def before_pad(arg): arg_temp = [] for atm in arg: if atm == 'PAD': break arg_temp.append(atm) if len(set(arg_temp)) == 3 and ('⊓' in arg_temp or '⊔' in arg_temp): return arg_temp[0] return arg_temp
[docs] class NCESTrainer: """NCES trainer.""" def __init__(self, nces, epochs=300, learning_rate=1e-4, decay_rate=0, clip_value=5.0, num_workers=8, storage_path="./"): self.nces = nces self.epochs = epochs self.learning_rate = learning_rate self.decay_rate = decay_rate self.clip_value = clip_value self.num_workers = num_workers self.storage_path = storage_path
[docs] @staticmethod def compute_accuracy(prediction, target): def soft(arg1, arg2): arg1_ = arg1 arg2_ = arg2 if isinstance(arg1_, str): arg1_ = set(before_pad(NCESBaseDataLoader.decompose(arg1_))) else: arg1_ = set(before_pad(arg1_)) if isinstance(arg2_, str): arg2_ = set(before_pad(NCESBaseDataLoader.decompose(arg2_))) else: arg2_ = set(before_pad(arg2_)) return 100*float(len(arg1_.intersection(arg2_)))/len(arg1_.union(arg2_)) def hard(arg1, arg2): arg1_ = arg1 arg2_ = arg2 if isinstance(arg1_, str): arg1_ = before_pad(NCESBaseDataLoader.decompose(arg1_)) else: arg1_ = before_pad(arg1_) if isinstance(arg2_, str): arg2_ = before_pad(NCESBaseDataLoader.decompose(arg2_)) else: arg2_ = before_pad(arg2_) return 100*float(sum(map(lambda x, y: x == y, arg1_, arg2_)))/max(len(arg1_), len(arg2_)) soft_acc = sum(map(soft, prediction, target))/len(target) hard_acc = sum(map(hard, prediction, target))/len(target) return soft_acc, hard_acc
[docs] def get_optimizer(self, synthesizer, optimizer='Adam'): # pragma: no cover if optimizer == 'Adam': return torch.optim.Adam(synthesizer.parameters(), lr=self.learning_rate) elif optimizer == 'SGD': return torch.optim.SGD(synthesizer.parameters(), lr=self.learning_rate) elif optimizer == 'RMSprop': return torch.optim.RMSprop(synthesizer.parameters(), lr=self.learning_rate) else: raise ValueError print('Unsupported optimizer')
[docs] @staticmethod def show_num_learnable_params(model): print("*"*20+"Trainable model size"+"*"*20) size = sum([p.numel() for p in model.parameters()]) size_ = 0 print("Synthesizer: ", size) print("*"*20+"Trainable model size"+"*"*20) print() return size
[docs] def collate_batch(self, batch): # pragma: no cover pos_emb_list = [] neg_emb_list = [] target_labels = [] for pos_emb, neg_emb, label in batch: if pos_emb.ndim != 2: pos_emb = pos_emb.reshape(1, -1) if neg_emb.ndim != 2: neg_emb = neg_emb.reshape(1, -1) pos_emb_list.append(pos_emb) neg_emb_list.append(neg_emb) target_labels.append(label) pos_emb_list[0] = F.pad(pos_emb_list[0], (0, 0, 0, self.nces.num_examples - pos_emb_list[0].shape[0]), "constant", 0) pos_emb_list = pad_sequence(pos_emb_list, batch_first=True, padding_value=0) neg_emb_list[0] = F.pad(neg_emb_list[0], (0, 0, 0, self.nces.num_examples - neg_emb_list[0].shape[0]), "constant", 0) neg_emb_list = pad_sequence(neg_emb_list, batch_first=True, padding_value=0) target_labels = pad_sequence(target_labels, batch_first=True, padding_value=-100) return pos_emb_list, neg_emb_list, target_labels
[docs] def map_to_token(self, idx_array): return self.nces.model[0].inv_vocab[idx_array]
[docs] def train(self, train_dataloader, save_model=True, optimizer='Adam', record_runtime=True): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") for model in self.nces.model: model_size = self.show_num_learnable_params(model) if device.type == "cpu": print("Training on CPU, it may take long...") else: print("GPU available !") print() print("#"*50) print() print("{} starts training... \n".format(model.name)) print("#"*50, "\n") synthesizer = copy.deepcopy(model).train() desc = synthesizer.name if device.type == "cuda": synthesizer.cuda() opt = self.get_optimizer(synthesizer=synthesizer, optimizer=optimizer) if self.decay_rate: self.scheduler = ExponentialLR(opt, self.decay_rate) Train_loss = [] Train_acc = defaultdict(list) best_score = 0. if record_runtime: t0 = time.time() s_acc, h_acc = 0, 0 Epochs = trange(self.epochs, desc=f'Loss: {np.nan}, Soft Acc: {s_acc}, Hard Acc: {h_acc}', leave=True) for e in Epochs: soft_acc, hard_acc = [], [] train_losses = [] for x1, x2, labels in train_dataloader: target_sequence = self.map_to_token(labels) if device.type == "cuda": x1, x2, labels = x1.cuda(), x2.cuda(), labels.cuda() pred_sequence, scores = synthesizer(x1, x2) loss = synthesizer.loss(scores, labels) s_acc, h_acc = self.compute_accuracy(pred_sequence, target_sequence) soft_acc.append(s_acc) hard_acc.append(h_acc) train_losses.append(loss.item()) opt.zero_grad() loss.backward() clip_grad_value_(synthesizer.parameters(), clip_value=self.clip_value) opt.step() if self.decay_rate: self.scheduler.step() train_soft_acc, train_hard_acc = np.mean(soft_acc), np.mean(hard_acc) Train_loss.append(np.mean(train_losses)) Train_acc['soft'].append(train_soft_acc) Train_acc['hard'].append(train_hard_acc) Epochs.set_description('Loss: {:.4f}, Soft Acc: {:.2f}%, Hard Acc: {:.2f}%'.format(Train_loss[-1], train_soft_acc, train_hard_acc)) Epochs.refresh() weights = copy.deepcopy(synthesizer.state_dict()) if Train_acc['hard'] and Train_acc['hard'][-1] > best_score: best_score = Train_acc['hard'][-1] best_weights = weights synthesizer.load_state_dict(best_weights) if record_runtime: # pragma: no cover duration = time.time()-t0 runtime_info = {"Architecture": synthesizer.name, "Number of Epochs": self.epochs, "Runtime (s)": duration} if not os.path.exists(self.storage_path+"/runtime/"): os.mkdir(self.storage_path+"/runtime/") with open(self.storage_path+"/runtime/runtime"+"_"+desc+".json", "w") as file: json.dump(runtime_info, file, indent=3) results_dict = dict() print("Top performance: loss: {:.4f}, soft accuracy: {:.2f}% ... " "hard accuracy: {:.2f}%".format(min(Train_loss), max(Train_acc['soft']), max(Train_acc['hard']))) print() results_dict.update({"Train Max Soft Acc": max(Train_acc['soft']), "Train Max Hard Acc": max(Train_acc['hard']), "Train Min Loss": min(Train_loss)}) if save_model: # pragma: no cover if not os.path.exists(self.storage_path+"/results/"): os.mkdir(self.storage_path+"/results/") with open(self.storage_path+"/results/"+"results"+"_"+desc+".json", "w") as file: json.dump(results_dict, file, indent=3) if not os.path.exists(self.storage_path+"/trained_models/"): os.mkdir(self.storage_path+"/trained_models/") torch.save(synthesizer.state_dict(), self.storage_path+"/trained_models/"+"trained_"+desc+".pt") print("{} saved".format(synthesizer.name)) if not os.path.exists(self.storage_path+"/metrics/"): os.mkdir(self.storage_path+"/metrics/") with open(self.storage_path+"/metrics/"+"metrics_"+desc+".json", "w") as plot_file: json.dump({"soft acc": Train_acc['soft'], "hard acc": Train_acc['hard'], "loss": Train_loss}, plot_file, indent=3)