complex_models

Attributes

seed

Classes

Complex

Base class for all neural network modules.

ConEx

Convolutional Complex Knowledge Graph Embeddings

Module Contents

complex_models.seed = 1
class complex_models.Complex(param)

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

name = 'Complex'
param
embedding_dim
num_entities
num_relations
Er
Rr
Ei
Ri
input_dropout
bn0
bn1
loss
init()
forward_head_batch(e1_idx, rel_idx)
forward_head_and_loss(e1_idx, rel_idx, targets)
get_embeddings()
abstract forward_triples(*args, **kwargs)
abstract forward_triples_and_loss(*args, **kwargs)
class complex_models.ConEx(params=None)

Bases: torch.nn.Module

Convolutional Complex Knowledge Graph Embeddings

name = 'ConEx'
loss
param
embedding_dim
num_entities
num_relations
kernel_size
num_of_output_channels
emb_ent_real
emb_ent_i
emb_rel_real
emb_rel_i
input_dp_ent_real
input_dp_ent_i
input_dp_rel_real
input_dp_rel_i
bn_ent_real
bn_ent_i
bn_rel_real
bn_rel_i
conv1
fc_num_input
fc
bn_conv1
bn_conv2
feature_map_dropout
residual_convolution(C_1, C_2)
forward_head_batch(*, e1_idx, rel_idx)

Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] => [0.0,0.1,…,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,| Entities|)

forward_head_and_loss(e1_idx, rel_idx, targets)
init()
get_embeddings()
forward_triples(*, e1_idx, rel_idx, e2_idx)
forward_triples_and_loss(e1_idx, rel_idx, e2_idx, targets)