ontolearn.learning_problem
Learning problem in Ontolearn.
Attributes
Classes
Encoded learning problem standard. |
|
Positive-Negative learning problem standard. |
|
To be implemented. |
|
To be implemented. |
Module Contents
- ontolearn.learning_problem.logger
- class ontolearn.learning_problem.EncodedPosNegLPStandard(kb_pos, kb_neg, kb_diff, kb_all)[source]
Bases:
ontolearn.abstracts.EncodedPosNegLPStandardKind
Encoded learning problem standard.
- kb_pos
Positive examples.
- Type:
set
- kb_neg
Negative examples.
- Type:
set
- kb_diff
kb_all - (kb_pos + kb_neg).
- Type:
set
- kb_all
All examples/ all individuals set.
- Type:
set
- __slots__ = ('kb_pos', 'kb_neg', 'kb_diff', 'kb_all')
- kb_pos: set
- kb_neg: set
- kb_diff: set
- kb_all: set
- class ontolearn.learning_problem.PosNegLPStandard(pos: Set[owlapy.owl_individual.OWLNamedIndividual], neg: Set[owlapy.owl_individual.OWLNamedIndividual], all_instances: Set[owlapy.owl_individual.OWLNamedIndividual] | None = None)[source]
Bases:
ontolearn.abstracts.AbstractLearningProblem
Positive-Negative learning problem standard. .. attribute:: pos
Positive examples.
- neg
Negative examples.
- all
All examples.
- __slots__ = ('pos', 'neg', 'all')
- pos
- neg
- encode_kb(kb: AbstractKnowledgeBase) EncodedPosNegLPStandard [source]
Provides the encoded learning problem (lp), i.e. the class containing the set of OWLNamedIndividuals as follows:
kb_pos –> the positive examples set, kb_neg –> the negative examples set, kb_all –> all lp individuals / all individuals set, kb_diff –> kb_all - (kb_pos + kb_neg).
- Parameters:
kb (PosNegLPStandard) – The knowledge base to encode the learning problem.
- Returns:
The encoded learning problem.
- Return type:
- class ontolearn.learning_problem.EncodedPosNegUndLP[source]
Bases:
ontolearn.abstracts.EncodedLearningProblem
To be implemented.
- class ontolearn.learning_problem.PosNegUndLP(*args, **kwargs)[source]
Bases:
ontolearn.abstracts.AbstractLearningProblem
To be implemented.