ontolearn.nces_modules

NCES modules.

Classes

MAB

MAB module.

SAB

SAB module.

ISAB

ISAB module.

PMA

PMA module.

ConEx

Convolutional Complex Knowledge Graph Embeddings

Module Contents

class ontolearn.nces_modules.MAB(dim_Q, dim_K, dim_V, num_heads, ln=False)[source]

Bases: torch.nn.Module

MAB module.

dim_V
num_heads
fc_q
fc_k
fc_v
fc_o
forward(Q, K)[source]
class ontolearn.nces_modules.SAB(dim_in, dim_out, num_heads, ln=False)[source]

Bases: torch.nn.Module

SAB module.

mab
forward(X)[source]
class ontolearn.nces_modules.ISAB(dim_in, dim_out, num_heads, m, ln=False)[source]

Bases: torch.nn.Module

ISAB module.

I
mab0
mab1
forward(X)[source]
class ontolearn.nces_modules.PMA(dim, num_heads, num_seeds, ln=False)[source]

Bases: torch.nn.Module

PMA module.

S
mab
forward(X)[source]
class ontolearn.nces_modules.ConEx(embedding_dim, num_entities, num_relations, input_dropout, feature_map_dropout, kernel_size, num_of_output_channels)[source]

Bases: torch.nn.Module

Convolutional Complex Knowledge Graph Embeddings

name = 'ConEx'
loss
embedding_dim
num_entities
num_relations
input_dropout
feature_map_dropout
kernel_size
num_of_output_channels
emb_ent_real
emb_ent_i
emb_rel_real
emb_rel_i
input_dp_ent_real
input_dp_ent_i
input_dp_rel_real
input_dp_rel_i
bn_ent_real
bn_ent_i
bn_rel_real
bn_rel_i
conv1
fc_num_input
fc
bn_conv1
bn_conv2
feature_dropout
residual_convolution(C_1, C_2)[source]
forward_head_batch(*, e1_idx, rel_idx)[source]

Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] => [0.0,0.1,…,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,| Entities|)

forward_head_and_loss(e1_idx, rel_idx, targets)[source]
init()[source]
get_embeddings()[source]
forward_triples(*, e1_idx, rel_idx, e2_idx)[source]
forward_triples_and_loss(e1_idx, rel_idx, e2_idx, targets)[source]