ontolearn.nces_modules
NCES modules.
Classes
MAB module. |
|
SAB module. |
|
ISAB module. |
|
PMA module. |
|
Convolutional Complex Knowledge Graph Embeddings |
Module Contents
- class ontolearn.nces_modules.MAB(dim_Q, dim_K, dim_V, num_heads, ln=False)[source]
Bases:
torch.nn.Module
MAB module.
- dim_V
- num_heads
- fc_q
- fc_k
- fc_v
- fc_o
- class ontolearn.nces_modules.SAB(dim_in, dim_out, num_heads, ln=False)[source]
Bases:
torch.nn.Module
SAB module.
- mab
- class ontolearn.nces_modules.ISAB(dim_in, dim_out, num_heads, m, ln=False)[source]
Bases:
torch.nn.Module
ISAB module.
- I
- mab0
- mab1
- class ontolearn.nces_modules.PMA(dim, num_heads, num_seeds, ln=False)[source]
Bases:
torch.nn.Module
PMA module.
- S
- mab
- class ontolearn.nces_modules.ConEx(embedding_dim, num_entities, num_relations, input_dropout, feature_map_dropout, kernel_size, num_of_output_channels)[source]
Bases:
torch.nn.Module
Convolutional Complex Knowledge Graph Embeddings
- name = 'ConEx'
- loss
- embedding_dim
- num_entities
- num_relations
- input_dropout
- feature_map_dropout
- kernel_size
- num_of_output_channels
- emb_ent_real
- emb_ent_i
- emb_rel_real
- emb_rel_i
- input_dp_ent_real
- input_dp_ent_i
- input_dp_rel_real
- input_dp_rel_i
- bn_ent_real
- bn_ent_i
- bn_rel_real
- bn_rel_i
- conv1
- fc_num_input
- fc
- bn_conv1
- bn_conv2
- feature_dropout
- forward_head_batch(*, e1_idx, rel_idx)[source]
Given a head entity and a relation (h,r), we compute scores for all entities. [score(h,r,x)|x in Entities] => [0.0,0.1,…,0.8], shape=> (1, |Entities|) Given a batch of head entities and relations => shape (size of batch,| Entities|)