real_models
Attributes
Classes
Base class for all neural network modules. |
|
TransE trained with binary cross entropy |
|
Base class for all neural network modules. |
Module Contents
- real_models.seed = 1
- class real_models.Distmult(param)
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- name = 'Distmult'
- param
- embedding_dim
- num_entities
- num_relations
- loss
- emb_ent_real
- emb_rel_real
- input_dp_ent_real
- input_dp_rel_real
- bn_ent_real
- bn_rel_real
- forward_head_batch(*, e1_idx, rel_idx)
- forward_head_and_loss(e1_idx, rel_idx, targets)
- init()
- get_embeddings()
- forward_triples(*, e1_idx, rel_idx, e2_idx)
- forward_triples_and_loss(e1_idx, rel_idx, e2_idx, targets)
- class real_models.TransE(param)
Bases:
torch.nn.Module
TransE trained with binary cross entropy
- name = 'TransE'
- param
- embedding_dim
- num_entities
- num_relations
- emb_ent_real
- emb_rel_real
- gamma
- loss
- init()
- get_embeddings()
- forward_triples(*, e1_idx, rel_idx, e2_idx)
- forward_triples_and_loss(e1_idx, rel_idx, e2_idx, target)
- abstract forward_head_and_loss(*args, **kwargs)
- class real_models.Tucker(param)
Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- name = 'Tucker'
- param
- embedding_dim
- num_entities
- num_relations
- E
- R
- W
- input_dropout
- bn0
- bn1
- loss
- init()
- forward_head_batch(e1_idx, rel_idx)
- forward_head_and_loss(e1_idx, rel_idx, targets)
- get_embeddings()
- abstract forward_triples(*args, **kwargs)
- abstract forward_triples_and_loss(*args, **kwargs)