real_models

Attributes

seed

Classes

Distmult

Base class for all neural network modules.

TransE

TransE trained with binary cross entropy

Tucker

Base class for all neural network modules.

Module Contents

real_models.seed = 1
class real_models.Distmult(param)

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

name = 'Distmult'
param
embedding_dim
num_entities
num_relations
loss
emb_ent_real
emb_rel_real
input_dp_ent_real
input_dp_rel_real
bn_ent_real
bn_rel_real
forward_head_batch(*, e1_idx, rel_idx)
forward_head_and_loss(e1_idx, rel_idx, targets)
init()
get_embeddings()
forward_triples(*, e1_idx, rel_idx, e2_idx)
forward_triples_and_loss(e1_idx, rel_idx, e2_idx, targets)
class real_models.TransE(param)

Bases: torch.nn.Module

TransE trained with binary cross entropy

name = 'TransE'
param
embedding_dim
num_entities
num_relations
emb_ent_real
emb_rel_real
gamma
loss
init()
get_embeddings()
forward_triples(*, e1_idx, rel_idx, e2_idx)
forward_triples_and_loss(e1_idx, rel_idx, e2_idx, target)
abstract forward_head_and_loss(*args, **kwargs)
class real_models.Tucker(param)

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

name = 'Tucker'
param
embedding_dim
num_entities
num_relations
E
R
W
input_dropout
hidden_dropout1
hidden_dropout2
bn0
bn1
loss
init()
forward_head_batch(e1_idx, rel_idx)
forward_head_and_loss(e1_idx, rel_idx, targets)
get_embeddings()
abstract forward_triples(*args, **kwargs)
abstract forward_triples_and_loss(*args, **kwargs)