ontolearn.learners.tree_learner
Classes
Tree-based Description Logic Concept Learner |
Functions
|
Given a trained Decision Tree, extract the paths from root to leaf nodes for each entities |
|
Reduces a list of OWLClassExpression instances into a single instance of OWLObjectUnionOf or OWLObjectIntersectionOf |
Module Contents
- ontolearn.learners.tree_learner.explain_inference(clf, X: pandas.DataFrame)[source]
Given a trained Decision Tree, extract the paths from root to leaf nodes for each entities https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html#understanding-the-decision-tree-structure
- ontolearn.learners.tree_learner.concepts_reducer(concepts: List[owlapy.class_expression.OWLClassExpression], reduced_cls: Callable) owlapy.class_expression.OWLObjectUnionOf | owlapy.class_expression.OWLObjectIntersectionOf [source]
Reduces a list of OWLClassExpression instances into a single instance of OWLObjectUnionOf or OWLObjectIntersectionOf
- class ontolearn.learners.tree_learner.TDL(knowledge_base, use_inverse: bool = False, use_data_properties: bool = False, use_nominals: bool = False, use_card_restrictions: bool = False, kwargs_classifier: dict = None, max_runtime: int = 1, grid_search_over: dict = None, grid_search_apply: bool = False, report_classification: bool = True, plot_tree: bool = False, plot_embeddings: bool = False, plot_feature_importance: bool = False, verbose: int = 10)[source]
Tree-based Description Logic Concept Learner
- use_nominals
- use_card_restrictions
- grid_search_over
- knowledge_base
- report_classification
- plot_tree
- plot_embeddings
- plot_feature_importance
- clf = None
- kwargs_classifier
- max_runtime
- features = None
- disjunction_of_conjunctive_concepts = None
- conjunctive_concepts = None
- owl_class_expressions
- cbd_mapping: Dict[str, Set[Tuple[str, str]]]
- types_of_individuals
- verbose
- data_property_cast
- X = None
- y = None
- extract_expressions_from_owl_individuals(individuals: List[owlapy.owl_individual.OWLNamedIndividual]) Tuple[Dict[str, owlapy.class_expression.OWLClassExpression], Dict[str, str]] [source]
- construct_sparse_binary_representations(features: List[owlapy.class_expression.OWLClassExpression], examples: List[owlapy.owl_individual.OWLNamedIndividual], examples_to_features) numpy.array [source]
- create_training_data(learning_problem: PosNegLPStandard) Tuple[pandas.DataFrame, pandas.DataFrame] [source]
- construct_owl_expression_from_tree(X: pandas.DataFrame, y: pandas.DataFrame) List[owlapy.class_expression.OWLObjectIntersectionOf] [source]
Construct an OWL class expression from a decision tree
- fit(learning_problem: PosNegLPStandard = None, max_runtime: int = None)[source]
Fit the learner to the given learning problem
Extract multi-hop information about E^+ and E^-.
Create OWL Class Expressions from (1)
Build a binary sparse training data X where first |E+| rows denote the binary representations of positives Remaining rows denote the binary representations of E⁻
(4) Create binary labels. (4) Construct a set of DL concept for each e in E^+ (5) Union (4)
- Parameters:
learning_problem – The learning problem
:param max_runtime:total runtime of the learning
- property classification_report: str