ontolearn.value_splitter
Value splitters.
Attributes
Classes
Abstract base class for split calculation of data properties. |
|
Calculate a number of bins of equal size as splits. |
|
Calculate the splits depending on the entropy of the resulting sets. |
Module Contents
- ontolearn.value_splitter.Values
- class ontolearn.value_splitter.AbstractValueSplitter(max_nr_splits: int)[source]
Abstract base class for split calculation of data properties.
- __slots__ = 'max_nr_splits'
- max_nr_splits: int
- class ontolearn.value_splitter.BinningValueSplitter(max_nr_splits: int = 12)[source]
Bases:
AbstractValueSplitter
Calculate a number of bins of equal size as splits.
- __slots__ = ()
- class ontolearn.value_splitter.Split[source]
- pos: List[str]
- neg: List[str]
- entropy: float
- used_properties: Set[str]
- class ontolearn.value_splitter.IndividualValues[source]
- pos_map: Dict[str, Values]
- neg_map: Dict[str, Values]
- get_overlapping_with_split(split: Split) IndividualValues [source]
- class ontolearn.value_splitter.EntropyValueSplitter(max_nr_splits: int = 2)[source]
Bases:
AbstractValueSplitter
Calculate the splits depending on the entropy of the resulting sets.
- __slots__ = '_prop_to_values'
- compute_splits_properties(reasoner: owlapy.abstracts.AbstractOWLReasoner, properties: List[owlapy.owl_property.OWLDataProperty], pos: Set[owlapy.owl_individual.OWLNamedIndividual] = None, neg: Set[owlapy.owl_individual.OWLNamedIndividual] = None) Dict[owlapy.owl_property.OWLDataProperty, List[owlapy.owl_literal.OWLLiteral]] [source]