ontolearn.lp_generator.helper_classes
Classes
Learning problem generator. |
|
This class takes an owl file, loads it into a knowledge base using ontolearn.knowledge_base.KnowledgeBase. |
Module Contents
- class ontolearn.lp_generator.helper_classes.ConceptDescriptionGenerator(knowledge_base, refinement_operator, depth=2, max_length=10, num_sub_roots=150)[source]
Learning problem generator.
- kb
- rho
- depth = 2
- num_sub_roots = 150
- max_length = 10
- class ontolearn.lp_generator.helper_classes.KB2Data(path, storage_path=None, max_num_lps=1000, beyond_alc=False, depth=3, max_child_length=20, refinement_expressivity=0.2, downsample_refinements=True, sample_fillers_count=10, num_sub_roots=50, min_num_pos_examples=1)[source]
This class takes an owl file, loads it into a knowledge base using ontolearn.knowledge_base.KnowledgeBase. A refinement operator is used to generate a large number of concepts, from which we filter and retain the shortest non-redundant concepts. We export each concept and its instances (eventually positive and negative examples) into a json file.
- path
- max_num_lps = 1000
- beyond_alc = False
- dl_syntax_renderer
- kb
- num_examples
- min_num_pos_examples = 1
- atomic_concept_names
- lp_gen